Trinitrotoluene explosive lights up ultrahigh Raman scattering of nonresonant molecule on a top-closed silver nanotube array.
نویسندگان
چکیده
The highest Raman enhancement factors are obtained in a double resonance: molecular electronic resonance and plasmon resonance with a "hot spot" in surface-enhanced Raman scattering (SERS). However, for most molecules of interest the double resonance is not realized with the excitation frequencies normally used in Raman. The latter may limit the practical applications of SERS for trace analysis. Here, we report that Raman-inactive trinitrotoluene (TNT) lights up the ultrahigh Raman scattering of off-resonated p-aminobenzenethiol (PABT) through the formation of charge-transfer TNT-PABT complex on the top-closed flexible silver nanotube array. Raman hot spots can spontaneously form in a reversible way by the self-approaching of flexible nanotubes driven through the capillary force of solvent evaporation. Meanwhile, the PABT-TNT-PABT bridges between self-approaching silver nanotubes possibly form by the specific complexing and zwitterion interactions, and the resultant chromophores can absorb the visible light that matches with the incident laser and the localized surface plasmon of a silver nanotube array. The multiple spectral resonances lead to the huge enhancement of Raman signals of PABT molecules due to the presence of ultratrace TNT. The enhancement effect is repeatedly renewable by the reconstruction of molecular bridges and can selectively detect TNT with a limit of 1.5 × 10(-17) M. The results in this report provide the simple and supersensitive approach to the detection of TNT explosives and the possibility of building a robust Raman-based assay platform.
منابع مشابه
Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کاملRaman Investigations of Adsorbate-Substrate Interactions on Composite Ag (or Cu)/TiO2 Nanotubes/Ti Substrates
A tubular array of TiO2 nanotubes on Ti matrix was used as a support for Ag or Cu sputter-deposited layers intended for surface-enhanced Raman scattering (SERS) investigations. Composite samples of Ag/TiO2-nanotube/Ti and Cu/TiO2nanotube/Ti were studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES and SAM) to reveal their characteristic morphological a...
متن کاملSurface Enhanced Raman Scattering (SERS) Studies of Gold and Silver Nanoparticles Prepared by Laser Ablation
Gold and silver nanoparticles (NPs) were prepared in water, acetonitrile and isopropanol by laser ablation methodologies. The average characteristic (longer) size of the NPs obtained ranged from 3 to 70 nm. 4-Aminobenzebethiol (4-ABT) was chosen as the surface enhanced Raman scattering (SERS) probe molecule to determine the optimum irradiation time and the pH of aqueous synthesis of the laser a...
متن کاملA Nanosensor for TNT Detection Based on Molecularly Imprinted Polymers and Surface Enhanced Raman Scattering
We report on a new sensor strategy that integrates molecularly imprinted polymers (MIPs) with surface enhanced Raman scattering (SERS). The sensor was developed to detect the explosive, 2,4,6-trinitrotoluene (TNT). Micron thick films of sol gel-derived xerogels were deposited on a SERS-active surface as the sensing layer. Xerogels were molecularly imprinted for TNT using non-covalent interactio...
متن کاملSurface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates.
Au and Ag nanoshells are investigated as substrates for surface-enhanced Raman scattering (SERS). We find that SERS enhancements on nanoshell films are dramatically different from those observed on colloidal aggregates, specifically that the Raman enhancement follows the plasmon resonance of the individual nanoparticles. Comparative finite difference time domain calculations of fields at the su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 83 18 شماره
صفحات -
تاریخ انتشار 2011